Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 567: 1-12, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25575784

RESUMO

The CBFß gene encodes a transcription factor that, in combination with CBFα (also called Runx, runt-related transcription factor) regulates expression of several target genes. CBFß interacts with all Runx family members, such as RUNX2, a regulator of bone-related gene transcription that contains a conserved DNA-binding domain. CBFß stimulates DNA binding of the Runt domain, and is essential for most of the known functions of RUNX2. A comparative analysis of the zebrafish cbfß gene and protein, and of its orthologous identified homologous proteins in different species indicates a highly conserved function. We cloned eleven zebrafish cbfß gene transcripts, one resulting in the known Cbfß protein (with 187 aa), and three additional variants resulting from skipping exon 5a (resulting in a protein with 174 aa) or exon 5b (resulting in a protein with 201 aa), both observed for the first time in zebrafish, and a completely novel isoform containing both exon 5a and 5b (resulting in a protein with 188 aa). Functional analysis of these isoforms provides insight into their role in regulating gene transcription. From the other variants two are premature termination Cbfß forms, while the others show in-frame exon-skipping causing changes in the Cbfß domain that may affect its function.


Assuntos
Subunidade beta de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Cromossomos/genética , Clonagem Molecular , Sequência Conservada , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade beta de Fator de Ligação ao Core/biossíntese , Subunidade beta de Fator de Ligação ao Core/química , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Biossíntese de Proteínas , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/química
2.
Calcif Tissue Int ; 79(4): 230-44, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17033725

RESUMO

Type X collagen is a short chain collagen specifically expressed by hypertrophic chondrocytes during endochondral ossification. We report here the functional analysis of the zebrafish (Danio rerio) collagen Xalpha1 gene (colXalpha1) promoter with the identification of a region responsive to two isoforms of the runt domain transcription factor runx2. Furthermore, we provide evidence for the presence of dual promoter usage in zebrafish, a finding that should be important to further understanding of the regulation of its restricted tissue distribution and spatial-temporal expression during early development. The zebrafish colXalpha1 gene structure is comparable to that recently identified by comparative genomics in takifugu and shows homology with corresponding mammalian genes, indicating that its general architecture has been maintained throughout vertebrate evolution. Our data suggest that, as in mammals, runx2 plays a role in the development of the osteogenic lineage, supporting zebrafish as a model for studies of bone and cartilage development.


Assuntos
Desenvolvimento Ósseo/genética , Colágeno Tipo X/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Isoformas de Proteínas/metabolismo , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência , Ativação Transcricional
3.
Development ; 128(21): 4113-25, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11684650

RESUMO

Waardenburg-Shah syndrome combines the reduced enteric nervous system characteristic of Hirschsprung's disease with reduced pigment cell number, although the cell biological basis of the disease is unclear. We have analysed a zebrafish Waardenburg-Shah syndrome model. We show that the colourless gene encodes a sox10 homologue, identify sox10 lesions in mutant alleles and rescue the mutant phenotype by ectopic sox10 expression. Using iontophoretic labelling of neural crest cells, we demonstrate that colourless mutant neural crest cells form ectomesenchymal fates. By contrast, neural crest cells which in wild types form non-ectomesenchymal fates generally fail to migrate and do not overtly differentiate. These cells die by apoptosis between 35 and 45 hours post fertilisation. We provide evidence that melanophore defects in colourless mutants can be largely explained by disruption of nacre/mitf expression. We propose that all defects of affected crest derivatives are consistent with a primary role for colourless/sox10 in specification of non-ectomesenchymal crest derivatives. This suggests a novel mechanism for the aetiology of Waardenburg-Shah syndrome in which affected neural crest derivatives fail to be generated from the neural crest.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Doença de Hirschsprung/genética , Mesoderma , Crista Neural/citologia , Transtornos da Pigmentação/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Apoptose , Diferenciação Celular/genética , Movimento Celular , Mapeamento Cromossômico , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero , Indução Embrionária/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ligação Genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Melanóforos/metabolismo , Dados de Sequência Molecular , Mutação , Fatores de Transcrição SOXE , Homologia de Sequência de Aminoácidos , Fatores de Transcrição , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
5.
Dev Biol ; 227(2): 294-306, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11071756

RESUMO

Pigment patterns of fishes are a tractable system for studying the genetic and cellular bases for postembryonic phenotypes. In the zebrafish Danio rerio, neural crest-derived pigment cells generate different pigment patterns during different phases of the life cycle. Whereas early larvae exhibit simple stripes of melanocytes and silver iridophores in a background of yellow xanthophores, this pigment pattern is transformed at metamorphosis into that of the adult, comprising a series of dark melanocyte and iridophore stripes, alternating with light stripes of iridophores and xanthophores. Although several genes have been identified in D. rerio that contribute to the development of both early larval and adult pigment patterns, comparatively little is known about genes that are essential for pattern formation during just one or the other life cycle phase. In this study, we identify the gene responsible for the rose mutant phenotype in D. rerio. rose mutants have wild-type early larval pigment patterns, but fail to develop normal numbers of melanocytes and iridophores during pigment pattern metamorphosis and exhibit a disrupted pattern of these cells. We show that rose corresponds to endothelin receptor b1 (ednrb1), an orthologue of amniote Ednrb genes that have long been studied for their roles in neural crest and pigment cell development. Furthermore, we demonstrate that D. rerio ednrb1 is expressed both during pigment pattern metamorphosis and during embryogenesis, and cells of melanocyte, iridophore, and xanthophore lineages all express this gene. These analyses suggest a phylogenetic conservation of roles for Ednrb signaling in the development of amniote and teleost pigment cell precursors. As murine Ednrb is essential for the development of all neural crest derived melanocytes, and D. rerio ednrb1 is required only by a subset of adult melanocytes and iridophores, these analyses also reveal variation among vertebrates in the cellular requirements for Ednrb signaling, and suggest alternative models for the cellular and genetic bases of pigment pattern metamorphosis in D. rerio.


Assuntos
Mutação , Crista Neural/metabolismo , Pigmentação/genética , Receptores de Endotelina/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Padronização Corporal/genética , Análise Mutacional de DNA , Endotelina-1/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Melanócitos/citologia , Melanócitos/metabolismo , Metamorfose Biológica/genética , Crista Neural/citologia , Fenótipo , Receptor de Endotelina B , Peixe-Zebra/embriologia
6.
Dev Biol ; 225(2): 277-93, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10985850

RESUMO

Vertebrate pigment cells are derived from neural crest, a tissue that also forms most of the peripheral nervous system and a variety of ectomesenchymal cell types. Formation of pigment cells from multipotential neural crest cells involves a number of common developmental processes. Pigment cells must be specified; their migration, proliferation, and survival must be controlled and they must differentiate to the final pigment cell type. We previously reported a large set of embryonic mutations that affect pigment cell development from neural crest (R. N. Kelsh et al., 1996, Development 123, 369-389). Based on distinctions in pigment cell appearance between mutants, we proposed hypotheses as to the process of pigment cell development affected by each mutation. Here we describe the cloning and expression of an early zebrafish melanoblast marker, dopachrome tautomerase. We used this marker to test predictions about melanoblast number and pattern in mutant embryos, including embryos homozygous for mutations in the colourless, sparse, touchdown, sunbleached, punkt, blurred, fade out, weiss, sandy, and albino genes. We showed that in homozygous mutants for all loci except colourless and sparse, melanoblast number and pattern are normal. colourless mutants have a pronounced decrease in melanoblast cell number from the earliest stages and also show poor melanoblast differentiation and migration. Although sparse mutants show normal numbers of melanoblasts initially, their number is reduced later. Furthermore, their distribution indicates a defect in melanoblast dispersal. These observations permit us to refine our model of the genetic control of melanophore development in zebrafish embryos.


Assuntos
Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Oxirredutases Intramoleculares/genética , Melanóforos/fisiologia , Crista Neural/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Padronização Corporal , Clonagem Molecular , Embrião não Mamífero/citologia , Regulação Enzimológica da Expressão Gênica , Humanos , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Melanóforos/citologia , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
7.
Mech Dev ; 93(1-2): 161-4, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10781949

RESUMO

The zebrafish fkd6 gene is a marker for premigratory neural crest. In this study, we analyze later expression in putative glia of the peripheral nervous system. Prior to neural crest migration, fkd6 expression is downregulated in crest cells. Subsequently, expression appears initially in loose clusters of cells in positions corresponding to cranial ganglia. Double labelling with a neuronal marker shows that fkd6-expressing cells are not differentiated neurones and generally lie peripheral to neurones in ganglia. Later, expression appears associated with the posterior lateral line and other cranial nerves. For the posterior lateral line nerve, we show that fkd6-labeling extends caudally along this nerve in tight correlation with lateral line primordium migration and axon elongation. Expression in colourless mutant embryos is consistent with these cells being satellite glia and Schwann cells.


Assuntos
Proteínas de Ligação a DNA/genética , Crista Neural/citologia , Neuroglia/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra , Animais , Sequência de Bases , Diferenciação Celular , DNA Complementar , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição Forkhead , Gânglios Espinais/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Crista Neural/metabolismo , Células de Schwann , Fatores de Transcrição/fisiologia , Peixe-Zebra
8.
Development ; 127(3): 515-25, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10631172

RESUMO

Neural crest forms four major categories of derivatives: pigment cells, peripheral neurons, peripheral glia, and ectomesenchymal cells. Some early neural crest cells generate progeny of several fates. How specific cell fates become specified is still poorly understood. Here we show that zebrafish embryos with mutations in the colourless gene have severe defects in most crest-derived cell types, including pigment cells, neurons and specific glia. In contrast, craniofacial skeleton and medial fin mesenchyme are normal. These observations suggest that colourless has a key role in development of non-ectomesenchymal neural crest fates, but not in development of ectomesenchymal fates. Thus, the cls mutant phenotype reveals a segregation of ectomesenchymal and non-ectomesenchymal fates during zebrafish neural crest development. The combination of pigmentation and enteric nervous system defects makes colourless mutations a model for two human neurocristopathies, Waardenburg-Shah syndrome and Hirschsprung's disease.


Assuntos
Deleção de Genes , Crista Neural/citologia , Crista Neural/fisiologia , Neurônios/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Cartilagem Articular/embriologia , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/embriologia , Face/embriologia , Humanos , Melanócitos/citologia , Mesoderma/fisiologia , Morfogênese , Mosaicismo , Neuroglia/citologia , Neurônios/fisiologia , Neurônios Aferentes/citologia , Pigmentação/genética
9.
Development ; 123: 1-36, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007226

RESUMO

In a large-scale screen, we isolated mutants displaying a specific visible phenotype in embryos or early larvae of the zebrafish, Danio rerio. Males were mutagenized with ethylnitrosourea (ENU) and F2 families of single pair matings between sibling F1 fish, heterozygous for a mutagenized genome, were raised. Egg lays were obtained from several crosses between F2 siblings, resulting in scoring of 3857 mutagenized genomes. F3 progeny were scored at the second, third and sixth day of development, using a stereomicroscope. In a subsequent screen, fixed embryos were analyzed for correct retinotectal projection. A total of 4264 mutants were identified. Two thirds of the mutants displaying rather general abnormalities were eventually discarded. We kept and characterized 1163 mutants. In complementation crosses performed between mutants with similar phenotypes, 894 mutants have been assigned to 372 genes. The average allele frequency is 2.4. We identified genes involved in early development, notochord, brain, spinal cord, somites, muscles, heart, circulation, blood, skin, fin, eye, otic vesicle, jaw and branchial arches, pigment pattern, pigment formation, gut, liver, motility and touch response. Our collection contains alleles of almost all previously described zebrafish mutants. From the allele frequencies and other considerations we estimate that the 372 genes defined by the mutants probably represent more than half of all genes that could have been discovered using the criteria of our screen. Here we give an overview of the spectrum of mutant phenotypes obtained, and discuss the limits and the potentials of a genetic saturation screen in the zebrafish.


Assuntos
Genes , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Cruzamentos Genéticos , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Masculino , Mutagênese , Fenótipo , Peixe-Zebra/crescimento & desenvolvimento
10.
Development ; 123: 47-55, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007228

RESUMO

Epiboly, the enveloping of the yolk cell by the blastoderm, is the first zebrafish morphogenetic movement. We isolated four mutations that affect epiboly: half baked, avalanche, lawine and weg. Homozygous mutant embryos arrest the vegetal progress of the deep cells of the blastoderm; only the yolk syncytial layer of the yolk cell and the enveloping layer of the blastoderm reach the vegetal pole of the embryo. The mutations half baked, avalanche and lawine produce a novel dominant effect, termed a zygotic-maternal dominant effect: heterozygous embryos produced from heterozygous females slow down epiboly and accumulate detached cells over the neural tube; a small fraction of these mutant individuals are viable. Heterozygous embryos produced from heterozygous males crossed to homozygous wild-type females complete epiboly normally and are completely viable. Additionally, embryos heterozygous for half baked have an enlarged hatching gland, a partial dominant phenotype. The phenotypes of these mutants demonstrate that, for the spreading of cells during epiboly, the movement of the deep cells of the blastoderm require the function of genes that are not necessary for the movement of the enveloping layer or the yolk cell. Furthermore, the dominant zygotic-maternal effect phenotypes illustrate the maternal and zygotic interplay of genes that orchestrate the early cell movements of the zebrafish.


Assuntos
Fase de Clivagem do Zigoto/fisiologia , Mutação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Movimento Celular/genética , Sobrevivência Celular/genética , Fase de Clivagem do Zigoto/citologia , Fase de Clivagem do Zigoto/transplante , Gema de Ovo/fisiologia , Feminino , Teste de Complementação Genética , Homozigoto , Fenótipo , Zigoto/fisiologia
11.
Development ; 123: 57-66, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007229

RESUMO

This report describes mutants of the zebrafish having phenotypes causing a general arrest in early morphogenesis. These mutants identify a group of loci making up about 20% of the loci identified by mutants with visible morphological phenotypes within the first day of development. There are 12 Class I mutants, which fall into 5 complementation groups and have cells that lyse before morphological defects are observed. Mutants at three loci, speed bump, ogre and zombie, display abnormal nuclei. The 8 Class II mutants, which fall into 6 complementation groups, arrest development before cell lysis is observed. These mutants seemingly stop development in the late segmentation stages, and maintain a body shape similar to a 20 hour embryo. Mutations in speed bump, ogre, zombie, specter, poltergeist and troll were tested for cell lethality by transplanting mutant cells into wild-type hosts. With poltergeist, transplanted mutant cells all survive. The remainder of the mutants tested were autonomously but conditionally lethal: mutant cells, most of which lyse, sometimes survive to become notochord, muscles, or, in rare cases, large neurons, all cell types which become postmitotic in the gastrula. Some of the genes of the early arrest group may be necessary for progression though the cell cycle; if so, the survival of early differentiating cells may be based on having their terminal mitosis before the zygotic requirement for these genes.


Assuntos
Ciclo Celular/genética , Mutagênese , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genes , Masculino , Mitose/genética , Fenótipo
12.
Development ; 123: 81-93, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007231

RESUMO

We identified 6 genes that are essential for specifying ventral regions of the early zebrafish embryo. Mutations in these genes cause an expansion of structures normally derived from dorsal-lateral regions of the blastula at the expense of ventrally derived structures. A series of phenotypes of varied strengths is observed with different alleles of these mutants. The weakest phenotype is a reduction in the ventral tail fin, observed as a dominant phenotype of swirl, piggytail, and somitabun and a recessive phenotype of mini fin, lost-a-fin and some piggytail alleles. With increasing phenotypic strength, the blood and pronephric anlagen are also reduced or absent, while the paraxial mesoderm and anterior neuroectoderm is progressively expanded. In the strong phenotypes, displayed hy homozygous embryos of snailhouse, swirl and somitabun, the somites circle around the embryo and the midbrain region is expanded laterally. Several mutations in this group of genes are semidominant as well as recessive indicating a strong dosage sensitivity of the processes involved. Mutations in the piggytail gene display an unusual dominance that depends on both a maternal and zygotic heterozygous genotype, while somitabun is a fully penetrant dominant maternal-effect mutation. The similar and overlapping phenotypes of mutants of the 6 genes identified suggest that they function in a common pathway, which begins in oogenesis, but also depends on factors provided after the onset of zygotic transcription, presumably during blastula stages. This pathway provides ventral positional information, counteracting the dorsalizing instructions of the organizer, which is localized in the dorsal shield.


Assuntos
Padronização Corporal/genética , Genes , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Ectoderma/fisiologia , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Dominantes , Variação Genética , Masculino , Mesoderma/metabolismo , Mutação , Fenótipo , Peixe-Zebra/anatomia & histologia , Zigoto/crescimento & desenvolvimento
13.
Development ; 123: 95-102, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007232

RESUMO

We describe two genes, dino and mercedes, which are required for the organization of the zebrafish body plan. In dino mutant embryos, the tail is enlarged at the expense of the head and the anterior region of the trunk. The altered expression patterns of various marker genes reveal that, with the exception of the dorsal most marginal zone, all regions of the early dino mutant embryo acquire more ventral fates. These alterations are already apparent before the onset of gastrulation. mercedes mutant embryos show a similar but weaker phenotype, suggesting a role in the same patterning processes. The phenotypes suggests that dino and mercedes are required for the establishment of dorsal fates in both the marginal and the animal zone of the early gastrula embryo. Their function in the patterning of the ventrolateral mesoderm and the induction of the neuroectoderm is similar to the function of the Spemann organizer in the amphibian embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/genética , Animais , Desenvolvimento Embrionário , Gástrula/fisiologia , Mesoderma/fisiologia , Mutagênese , Peixe-Zebra/embriologia
14.
Development ; 123: 103-15, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007233

RESUMO

In a large scale screen for mutants with defects in the embryonic development of the zebrafish we identified mutations in four genes,floating head (flh), momo (mom), no tail (ntl), and doc, that are required for early notochord formation. Mutations in flh and ntl have been described previously, while mom and doc are newly identified genes. Mutant mom embryos lack a notochord in the trunk, and trunk somites from the right and left side of the embryo fuse underneath the neural tube. In this respect mom appears similar to flh. In contrast, notochord precursor cells are present in both ntl and doc embryos. In order to gain a greater understanding of the phenotypes, we have analysed the expression of several axial mesoderm markers in mutant embryos of all four genes. In flh and mom, Ntl expression is normal in the germ ring and tailbud, while the expression of Ntl and other notochord markers in the axial mesodermal region is disrupted. Ntl expression is normal in doc embryos until early somitic stages, when there is a reduction in expression which is first seen in anterior regions of the embryo. This suggests a function for doc in the maintenance of ntl expression. Other notochord markers such as twist, sonic hedgehog and axial are not expressed in the axial mesoderm of ntl embryos, their expression parallels the expression of ntl in the axial mesoderm of mutant doc, flh and mom embryos, indicating that ntl is required for the expression of these markers. The role of doc in the expression of the notochord markers appears indirect via ntl. Floor plate formation is disrupted in most regions in flh and mom mutant embryos but is present in mutant ntl and doc embryos. In mutant embryos with strong ntl alleles the band of cells expressing floor plate markers is broadened. A similar broadening is also observed in the axial mesoderm underlying the floor plate of ntl embryos, suggesting a direct involvement of the notochord precursor cells in floor plate induction. Mutations in all of these four genes result in embryos lacking a horizontal myoseptum and muscle pioneer cells, both of which are thought to be induced by the notochord. These somite defects can be traced back to an impairment of the specification of the adaxial cells during early stages of development. Transplantation of wild-type cells into mutant doc embryos reveals that wild-type notochord cells are sufficient to induce horizontal myoseptum formation in the flanking mutant tissue. Thus doc, like flh and ntl, acts cell autonomously in the notochord. In addition to the four mutants with defects in early notochord formation, we have isolated 84 mutants, defining at least 15 genes, with defects in later stages of notochord development. These are listed in an appendix to this study.


Assuntos
Mutação , Notocorda/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Diferenciação Celular/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes , Marcadores Genéticos , Mesoderma/fisiologia , Notocorda/patologia , Notocorda/fisiologia , Peixe-Zebra/anatomia & histologia
15.
Development ; 123: 129-42, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007235

RESUMO

Tissues of the dorsal midline of vertebrate embryos, such as notochord and floor plate, have been implicated in inductive interactions that pattern the neural tube and somites. In our screen for embryonic visible mutations in the zebrafish we found 113 mutations in more than 27 genes with altered body shape, often with additional defects in CNS development. We concentrated on a subgroup of mutations in ten genes (the midline-group) that cause defective development of the floor plate. By using floor plate markers, such as the signaling molecule sonic hedgehog, we show that the schmalspur (sur) gene is needed for early floor plate development, similar to one-eyed-pinhead (oep) and the previously described cyclops (cyc) gene. In contrast to oep and cyc, sur embryos show deletions of ventral CNS tissue restricted to the mid- and hindbrain, whereas the forebrain appears largely unaffected. In the underlying mesendodermal tissue of the head, sur is needed only for development of the posterior prechordal plate, whereas oep and cyc are required for both anterior and posterior prechordal plate development. Our analysis of sur mutants suggests that defects within the posterior prechordal plate may cause aberrant development of ventral CNS structures in the mid- and hindbrain. Later development of the floor plate is affected in mutant chameleon, you-too, sonic-you, iguana, detour, schmalhans and monorail embryos; these mutants often show additional defects in tissues that are known to depend on signals from notochord and floor plate. For example, sur, con and yot mutants show reduction of motor neurons; median deletions of brain tissue are seen in sur, con and yot embryos; and cyc, con, yot, igu and dtr mutants often show no or abnormal formation of the optic chiasm. We also find fusions of the ventral neurocranium for all midline mutants tested, which may reveal a hitherto unrecognized function of the midline in influencing differentiation of neural crest cells at their destination. As a working hypothesis, we propose that midline-group genes may act to maintain proper structure and inductive function of zebrafish midline tissues.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Animais , Axônios/fisiologia , Encéfalo/embriologia , Encéfalo/patologia , Embrião não Mamífero/anatomia & histologia , Desenvolvimento Embrionário , Teste de Complementação Genética , Mesoderma/patologia , Neurônios Motores/patologia , Sistema Nervoso/embriologia , Peixe-Zebra/genética
16.
Development ; 123: 143-51, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007236

RESUMO

We have identified several genes that are required for various morphogenetic processes during gastrulation and tail formation. Two genes are required in the anterior region of the body axis: one eyed pinhead (oep) and dirty nose (dns).oep mutant embryos are defective in prechordal plate formation and the specification of anterior and ventral structures of the central nervous system. In dns mutants, cells of the prechordal plate, such as the prospective hatching gland cells, fail to specify. Two genes are required for convergence and extension movements. In mutant trilobite embryos, extension movements on the dorsal side of the embryo are affected, whereas in the formerly described spadetail mutants, for which two new alleles have been isolated, convergent movements of ventrolateral cells to the dorsal side are blocked. Two genes are required for the development of the posterior end of the body axis. In pipetail mutants, the tailbud fails to move ventrally on the yolk sac after germ ring closure, and the tip of the tail fails to detach from the yolk tube. Mutants in kugelig (kgg) do not form the yolk tube at the posterior side of the yolk sac.


Assuntos
Gástrula/fisiologia , Mutação , Cauda/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes , Mesoderma/metabolismo , Morfogênese/genética , Movimento , Sistema Nervoso/embriologia
17.
Development ; 123: 153-64, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007237

RESUMO

Somitogenesis is the basis of segmentation of the mesoderm in the trunk and tail of vertebrate embryos. Two groups of mutants with defects in this patterning process have been isolated in our screen for zygotic mutations affecting the embryonic development of the zebrafish (Danio rerio). In mutants of the first group, boundaries between individual somites are invisible early on, although the paraxial mesoderm is present. Later, irregular boundaries between somites are present. Mutations in fused somites (fss) and beamter (bea) affect all somites, whereas mutations in deadly seven (des), after eight (aei) and white tail (wit) only affect the more posterior somites. Mutants of all genes but wit are homozygous viable and fertile. Skeletal stainings and the expression pattern of myoD and snail1 suggest that anteroposterior patterning within individual somites is abnormal. In the second group of mutants, formation of the horizontal myoseptum, which separates the dorsal and ventral part of the myotome, is reduced. Six genes have been defined in this group (you-type genes). you-too mutants show the most severe phenotype; in these the adaxial cells, muscle pioneers and the primary motoneurons are affected, in addition to the horizontal myoseptum. The horizontal myoseptum is also missing in mutants that lack a notochord. The similarity of the somite phenotype in mutants lacking the notochord and in the you-type mutants suggests that the genes mutated in these two groups are involved in a signaling pathway from the notochord, important for patterning of the somites.


Assuntos
Padronização Corporal/genética , Mutação , Somitos/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/fisiologia , Neurônios Motores/patologia , Músculos/citologia , Músculos/embriologia , Somitos/citologia , Peixe-Zebra/anatomia & histologia
18.
Development ; 123: 179-90, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007239

RESUMO

Mutations in two genes affect the formation of the boundary between midbrain and hindbrain (MHB): no isthmus (noi) and acerebellar (ace). noi mutant embryos lack the MHB constriction, the cerebellum and optic tectum, as well as the pronephric duct. Analysis of noi mutant embryos with neuron-specific antibodies shows that the MHB region and the dorsal and ventral midbrain are absent or abnormal, but that the rostral hindbrain is unaffected with the exception of the cerebellum. Using markers that are expressed during its formation (eng, wnt1 and pax-b), we find that the MHB region is already misspecified in noi mutant embryos during late gastrulation. The tectum is initially present and later degenerates. The defect in ace mutant embryos is more restricted: MHB and cerebellum are absent, but a tectum is formed. Molecular organisation of the tectum and tegmentum is disturbed, however, since eng, wnt1 and pax-b marker gene expression is not maintained. We propose that noi and ace are required for development of the MHB region and of the adjacent mid- and hindbrain, which are thought to be patterned by the MHB region. Presence of pax-b RNA, and absence of pax-b protein, together with the observation of genetic linkage and the occurrence of a point mutation, show that noi mutations are located in the pax-b gene. pax-b is a vertebrate orthologue of the Drosophila gene paired, which is involved in a pathway of cellular interactions at the posterior compartment boundary in Drosophila. Our results confirm and extend a previous report, and show that at least one member of this conserved signalling pathway is required for formation of the boundary between midbrain and hindbrain in the zebrafish.


Assuntos
Mesencéfalo/embriologia , Mutação , Rombencéfalo/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Morte Celular/genética , Sistema Nervoso Central/embriologia , Embrião não Mamífero/citologia , Deleção de Genes , Genes , Ligação Genética , Marcadores Genéticos , Fenótipo , Colículos Superiores/citologia , Colículos Superiores/embriologia
19.
Development ; 123: 191-203, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007240

RESUMO

We identified four zebrafish mutants with defects in forebrain induction and patterning during embryogenesis. The four mutants define three genes: masterblind (mbl), silberblick (slb), and knollnase (kas). In mbl embryos, the anterior forebrain acquires posterior forebrain characteristics: anterior structures such as the eyes, olfactory placodes and the telencephalon are missing, whereas the epiphysis located in the posterior forebrain is expanded. In slb embryos, the extension of the embryonic axis is initially delayed and eventually followed by a partial fusion of the eyes. Finally, in kas embryos, separation of the telencephalic primordia is incomplete and dorsal midline cells fail to form a differentiated roof plate. Analysis of the mutant phenotypes indicates that we have identified genes essential for the specification of the anterior forebrain (mbl), positioning of the eyes (slb) and differentiation of the roof plate (kas). In an appendix to this study we list mutants showing alterations in the size of the eyes and abnormal differentiation of the lenses.


Assuntos
Genes , Prosencéfalo/embriologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Padronização Corporal/genética , Ventrículos Cerebrais/embriologia , Ectoderma/citologia , Ectoderma/fisiologia , Gástrula/fisiologia , Ligação Genética , Camundongos , Mutagênese , Sistema Nervoso/embriologia , Fenótipo , Telencéfalo/embriologia
20.
Development ; 123: 205-16, 1996 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9007241

RESUMO

In a screen for embryonic mutants in the zebrafish a large number of mutants were isolated with abnormal brain morphology. We describe here 26 mutants in 13 complementation groups that show abnormal development of large regions of the brain. Early neurogenesis is affected in white tail (wit). During segmentation stages, homozygous wit embryos display an irregularly formed neural keel, particularly in the hindbrain. Using a variety of molecular markers, a severe increase in the number of various early differentiating neurons can be demonstrated. In contrast, late differentiating neurons, radial glial cells and some nonneural cell types, such as the neural crest-derived melanoblasts, are much reduced. Somitogenesis appears delayed. In addition, very reduced numbers of melanophores are present posterior to the mid-trunk. The wit phenotype is reminiscent of neurogenic mutants in Drosophila, such as Notch or Delta. In mutant parachute (pac) embryos the general organization of the hindbrain is disturbed and many rounded cells accumulate loosely in the hindbrain and midbrain ventricles. Mutants in a group of 6 genes, snakehead(snk), natter (nat), otter (ott), fullbrain (ful), viper (vip) and white snake (wis) develop collapsed brain ventricles, before showing signs of general degeneration. atlantis (atl), big head (bid), wicked brain (win), scabland (sbd) and eisspalte (ele) mutants have different malformation of the brain folds. Some of them have transient phenotypes, and mutant individuals may grow up to adults.


Assuntos
Encéfalo/embriologia , Mutagênese , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Encéfalo/patologia , Diferenciação Celular/genética , Ventrículos Cerebrais/embriologia , Hiperplasia , Músculo Esquelético/embriologia , Crista Neural/citologia , Crista Neural/embriologia , Neuroglia/citologia , Neurônios/citologia , Fenótipo , Somitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...